

under the auspices of

Cardiac MRI in Ischemic Heart Disease

Dr. Ayten Nasibova
Central Clinic Hospital

Why We Need CMR in Ischemic Heart Disease

Ischemic heart disease is the leading cause of heart failure worldwide.

Up to 50% of patients with EF <35% do not recover function post-revascularization.

Standard tools like echocardiography and angiography often fail to distinguish viable from non-viable myocardium.

Seeing Beyond the Ejection Fraction

Echo is a map – it shows us motion.

CMR is a microscope – it reveals tissue composition.

- Echo Provides
- EF and wall motion
- LV volumes
- Valve function

CMR Adds

- •Tissue characterization (scar, edema, fibrosis)
- Microvascular obstruction (MO)
- Myocardial salvage index (MSI)
- Viability assessment
- Prognostic information

CMR Tells Us:

- What is alive
- What is dead
- What can recover

CMR Sequences in Ischemic Heart Disease

Sequence	Measures	Clinical Interpretation
Cine SSFP	Wall motion, volumes, EF	Systolic dysfunction
T2-weighted (STIR)	Edema	Acute injury, area-at-risk
EGE (Early Gadolinium)	Hyperemia, inflammation	Acute ischemia
LGE (Late Gadolinium)	Fibrosis, necrosis	Viability, transmurality
T1 Mapping / ECV	Interstitial fibrosis	Chronic remodeling
Stress perfusion	Blood flow reserve	Ischemia detection
Feature Tracking (Strain)	Deformation analysis	Subclinical dysfunction

Role of CMR in Viability Assessment

What is Viability Assessment?

Selecting patients who will benefit from revascularization over optimal medical therapy

Markers of viability = presence of living myocytes

Bright is Dead

Viability in Chronic ischemia

- 58-year-old male
- Prior STEMI and multivessel CAD
- EF 30%

Revascularization?

- LGE:
 - Transmural (>75%) LGE in septal, anterior, inferior walls
- No microvascular obstruction
- T2-weighted imaging: No edema (chronic infarct pattern)

Would you consider revascularizing in this patient?

Hibernation vs Stunning – Myocardial Viability Phenotypes

hybernation = viability

stunning
=
recovery
after ischemia

 66-year-old male with prior NSTEMI and multivessel CAD:

LAD-100%, CX-95%, RCA-99%

- EF: 35%
- Being evaluated for revascularization vs device therapy

- LGE: Subendocardial LGE <50% in septal, anterior and inferior segments
- No microvascular obstruction, no acute edema

Would you recommend revascularization in this case?

CMR in Acute Myocardial Infarction

MVO strongly associated with worse outcomes, including adverse remodeling and increased risk of arrhythmia

Area-at-risk

$$\mathbf{MSI} = rac{ ext{Area at Risk (AAR)} - ext{Infarct Size}}{ ext{Area at Risk (AAR)}} imes 100\%$$

MSI above 40% is typically associated with better long-term recovery.

EGE LGE

- 58-year-old male with **inferior STEMI**, LAD 95%, CX-100%
- Primary PCI performed within 2 hours of symptom onset
- EF: 40% post-PCI
- Undergoing early CMR on day 4

MSi = (7.8-5.2)/7.8 = 33%

T2w

LGE

Microvascular damage Higher risk of worse outcomes despite reperfusion

What does the presence of MO and MSI tell you in this case?

- 59-year-old male with anterior STEMI 3 days ago
- Delayed PCI performed
- EF: 35% post-PCI
- Undergoing early CMR on day 4

- Cine SSFP: Hypokinesis\akinesis in septum, anterior wall, apical s
- T2-weighted imaging: High signal intensity in anterior segments
- LGE: transmural enhancement in mid\apical septum, anterior wan, aprear segments and
- Central hypoenhancement (MO) within LGE area

most of the myocardium at risk had already undergone irreversible injury prior to revascularization

After 3 months

- Cine SSFP: Hypokinesis\akinesis in septum, anterior wall, apical segments and apex
- LGE: transmural enhancement in mid\apical septum, anterior wall, apical segments and apex

So when we look at acute MI on MRI, we're not just asking 'how much damage was done?' – we're also asking 'how much was saved?'

CMR in Post-MI Mechanical Complications

CMR-Based Summary Table of Mechanical Complications:

Complication	CMR Clues	Clinical Implications
Ventricular Septal Rupture (VSR)	Septal discontinuity, turbulent flow, transmural LGE	Hemodynamic collapse, urgent surgery
Free Wall Rupture / Pseudoaneurysm	Contained rupture, narrow neck, pericardial LGE/thrombus	Risk of tamponade, emergency repair
Papillary Muscle Rupture (PMR)	Hypermobile or absent papillary muscle, severe MR	Acute heart failure, surgical correction
LV Thrombus	Low signal, non-enhancing apical mass on EGE, LGE	Embolic stroke risk, anticoagulation
True LV Aneurysm	Wide neck, transmural LGE, dyskinetic motion	Surgical vs conservative decision

Ventricular septal rupture

- 69-year-old female with anterior STEMI 5-6 days ago
- EF 18%

Thrombus

- •63-year-old male, 1 month ago anterior STEMI
- •LVEF 20%
- •TTE giant mass in apex

- Low signal
- non-enhancing apical mass on LGE

Pseudoaneurysm

- •54-year-old male, anterior STEMI 20 days ago
- Persistent chest discomfort, hypotension
- •Echo: suspicious outpouching near lateral wall

- Cine: Dyskinetic outpouching
- LGE: Transmural scar + pericardial enhancement + thrombus

Aneurysm

- •66-year-old female with prior anterior STEMI (4 months ago)
- •Dyspnea on exertion, EF 30%
- •Echo: akinetic bulge in anterior wall

- **Cine:** Dyskinetic motion, wide neck
- **LGE:** Transmural infarction, intact wall

"CMR doesn't just show the heart—it tells its story."

Thank you for your attention!